Back to top
This page describes the functions Gannet uses to model metabolite
signals. Note that when the definition of a parameter is omitted from a
table under a particular metabolite, it is implied that it has been
defined already in a previously described function.
For all model fitting, Gannet uses nonlinear regression, with fit
parameters optimized using the least-squares Levenberg-Marquardt
algorithm. For increased computational speed and a better solution, the
starting values of the optimization are derived from a “pre-fit” that
uses the trust-region-reflective algorithm. Description of these
algorithms can be found in the
online
MATLAB documentation .
GABA+Glx
GABA and Glx are fitted using a three-Gaussian model with a linear
slope and non-linear baseline:
\[
S(f) =
\sum_{i=1}^{3}\left\{A_i\exp[\sigma_i(f-f_i)^2]\right\}+
m(f-f_1)+
b_1\sin(\pi{f}/1.31/4)+
b_2\cos(\pi{f}/1.31/4)
\]
where:
\(f\)
Frequency (ppm)
\(A_i\)
Gaussian i ’s amplitude
\(\sigma_i\)
Gaussian i ’s width
\(f_i\)
Gaussian i ’s center frequency (ppm)
\(m\)
Slope of linear baseline
\(b_1\)
Sine baseline term
\(b_2\)
Cosine baseline term
The GABA+Glx
model is fitted using a model that has observation weights between 3.16
and 3.285 ppm, where the Cho subtraction artifact1
appears. The purpose is to down-weight the influence of this artifact
(if present) on the model fitting.
GSH (TE < 100 ms)
GSH that is edited at a TE < 100 ms is fitted with a five-Gaussian
model with a linear + quadratic baseline:
\[
S(f) =
\sum_{i=1}^{5}\left\{A_i\exp[\sigma_i(f-f_i)^2]\right\}+
m_1(f-f_1)+
m_2(f-f_1)^2+b
\]
where:
\(m_1\)
Slope of linear baseline
\(m_2\)
Quadratic baseline term
\(b\)
Baseline offset
GSH (TE >= 100 ms)
GSH that is edited at a TE >= 100 ms is fitted with a six-Gaussian
model with a linear + quadratic baseline:
\[
S(f) =
\sum_{i=1}^{6}\left\{A_i\exp[\sigma_i(f-f_i)^2]\right\}+
m_1(f-f_1)+
m_2(f-f_1)^2+b
\]
Lac
Model
optimization of the edited Lac peak is ongoing.
Lac is fitted with a four-Gaussian model with a linear + quadratic
baseline:
\[
S(f) =
\sum_{i=1}^{4}\left\{A_i\exp[\sigma_i(f-f_i)^2]\right\}+
m_1(f-f_1)+
m_2(f-f_1)^2+b
\]
EtOH
EtOH is fitted with a two-Lorentzian model with a linear
baseline:
\[
S(f) =
\sum_{i=1}^{2}\left[\frac{A_{i}}{1+\left(\frac{f-f_{i}}{\gamma_{i}/2}\right)^2}\right]+
m(f-f_1)+b
\]
where:
\(A_i\)
Lorentzian i ’s amplitude
\(f_i\)
Lorentzian i ’s center frequency (ppm)
\(\gamma\)
Lorentzian width (full-width at half-maximum)
The EtOH
model is fitted using a model that has observation weights between 1.29
and 1.51 ppm, where the Lac subtraction artifact appears. The purpose is
to down-weight the influence of this artifact (if present) on the model
fitting.
Cho+Cr
Cho and Cr in the edit-OFF spectrum are fitted with a two-Lorentzian
model with a linear baseline:
\[
Absorption(f) =
\frac{A}{2\pi}\frac{\gamma}{(f-f_0)^2+\gamma^2}+
\frac{Ah}{2\pi}\frac{\gamma}{(f-f_0-0.18)^2+\gamma^2}
\] \[
Dispersion(f) =
\frac{A}{2\pi}\frac{f-f_0}{(f-f_0)^2+\gamma^2}+
\frac{Ah}{2\pi}\frac{f-f_0-0.18}{(f-f_0-0.18)^2+\gamma^2}
\]
\[
S(f) =
\cos(\phi)Absorption(f)+
\sin(\phi)Dispersion(f)+
m(f-f_0)+b
\]
where:
\(A\)
Amplitude of Cr peak
\(\gamma\)
Lorentzian width (half-width at half-maximum)
\(f_0\)
Center frequency of Cr peak
\(h\)
Amplitude scaling factor for Cho peak
\(\phi\)
Phase
NAA
NAA in the edit-OFF spectrum is fitted with a Lorentzian model with a
linear baseline:
\[
Absorption(f) =
\frac{A}{2\pi}\frac{\gamma}{(f-f_0)^2+\gamma^2}
\] \[
Dispersion(f) =
\frac{A}{2\pi}\frac{(f-f_0)}{(f-f_0)^2+\gamma^2}
\]
\[
S(f) =
\cos(\phi)Absorption(f)+
\sin(\phi)Dispersion(f)+
m(f-f_0)+b
\]
Water
The unsurpressed water signal is fitted with a Lorentzian-Gaussian
model with a linear baseline:
\[
S(f) =
\frac{\cos(\phi)A+\sin(\phi)A\gamma(f-f_0)}
{\gamma^2(f-f_0)^2+1}
\exp[\sigma(f-f_0)^2]+
m(f-f_0)+b
\]
References
1.
Evans CJ, Puts NAJ, Robson SE, et al.
Subtraction artifacts and frequency (Mis-)alignment in
J-difference GABA editing .
Journal of Magnetic Resonance
Imaging . 2013;38(4):970-975. doi:
10.1002/jmri.23923
LS0tCnRpdGxlOiAiU2lnbmFsIG1vZGVsaW5nIgpkYXRlOiAiTGFzdCB1cGRhdGVkOiBgciBmb3JtYXQoU3lzLnRpbWUoKSwgJyVCICVkLCAlWScpYCIKYmlibGlvZ3JhcGh5OiBiaWJsaW9ncmFwaHkuYmliCmNzbDogYW1lcmljYW4tbWVkaWNhbC1hc3NvY2lhdGlvbi5jc2wKbGluay1jaXRhdGlvbnM6IHllcwpvdXRwdXQ6CiAgaHRtbF9kb2N1bWVudDoKICAgIHRvYzogVFJVRQogICAgdG9jX2RlcHRoOiAyCiAgICB0b2NfZmxvYXQ6CiAgICAgIGNvbGxhcHNlZDogRkFMU0UKLS0tCgpgYGB7ciBzZXR1cCwgaW5jbHVkZSA9IEZBTFNFfQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpCmBgYAoKYGBge3IsIGNoaWxkID0gImpzL2JhY2stdG8tdG9wLmpzIn0KYGBgCgpgYGB7Y3NzLCBlY2hvID0gRkFMU0V9CnRhYmxlIHsKICBtYXJnaW46IGF1dG87Cn0KCnRhYmxlIHRoZWFkIHRoIHsKICBib3JkZXItYm90dG9tOiAxcHggc29saWQgI2RkZDsKfQoKdGgsIHRkIHsKICBwYWRkaW5nOiA1cHg7Cn0KCnRmb290LCB0cjpudGgtY2hpbGQoZXZlbikgewogIGJhY2tncm91bmQ6ICNlZWU7Cn0KYGBgCgo8YnI+CgpUaGlzIHBhZ2UgZGVzY3JpYmVzIHRoZSBmdW5jdGlvbnMgR2FubmV0IHVzZXMgdG8gbW9kZWwgbWV0YWJvbGl0ZSBzaWduYWxzLiBOb3RlIHRoYXQgd2hlbiB0aGUgZGVmaW5pdGlvbiBvZiBhIHBhcmFtZXRlciBpcyBvbWl0dGVkIGZyb20gYSB0YWJsZSB1bmRlciBhIHBhcnRpY3VsYXIgbWV0YWJvbGl0ZSwgaXQgaXMgaW1wbGllZCB0aGF0IGl0IGhhcyBiZWVuIGRlZmluZWQgYWxyZWFkeSBpbiBhIHByZXZpb3VzbHkgZGVzY3JpYmVkIGZ1bmN0aW9uLgoKRm9yIGFsbCBtb2RlbCBmaXR0aW5nLCBHYW5uZXQgdXNlcyBub25saW5lYXIgcmVncmVzc2lvbiwgd2l0aCBmaXQgcGFyYW1ldGVycyBvcHRpbWl6ZWQgdXNpbmcgdGhlIGxlYXN0LXNxdWFyZXMgTGV2ZW5iZXJnLU1hcnF1YXJkdCBhbGdvcml0aG0uIEZvciBpbmNyZWFzZWQgY29tcHV0YXRpb25hbCBzcGVlZCBhbmQgYSBiZXR0ZXIgc29sdXRpb24sIHRoZSBzdGFydGluZyB2YWx1ZXMgb2YgdGhlIG9wdGltaXphdGlvbiBhcmUgZGVyaXZlZCBmcm9tIGEgInByZS1maXQiIHRoYXQgdXNlcyB0aGUgdHJ1c3QtcmVnaW9uLXJlZmxlY3RpdmUgYWxnb3JpdGhtLiBEZXNjcmlwdGlvbiBvZiB0aGVzZSBhbGdvcml0aG1zIGNhbiBiZSBmb3VuZCBpbiB0aGUgPGEgaHJlZj0iaHR0cHM6Ly93d3cubWF0aHdvcmtzLmNvbS9oZWxwL29wdGltL3VnL2xlYXN0LXNxdWFyZXMtbW9kZWwtZml0dGluZy1hbGdvcml0aG1zLmh0bWwiIHRhcmdldD0iX2JsYW5rIj5vbmxpbmUgTUFUTEFCIGRvY3VtZW50YXRpb248L2E+LgoKIyMgR0FCQStHbHgKCkdBQkEgYW5kIEdseCBhcmUgZml0dGVkIHVzaW5nIGEgdGhyZWUtR2F1c3NpYW4gbW9kZWwgd2l0aCBhIGxpbmVhciBzbG9wZSBhbmQgbm9uLWxpbmVhciBiYXNlbGluZToKCiQkClMoZikgPQpcc3VtX3tpPTF9XnszfVxsZWZ0XHtBX2lcZXhwW1xzaWdtYV9pKGYtZl9pKV4yXVxyaWdodFx9KwptKGYtZl8xKSsKYl8xXHNpbihccGl7Zn0vMS4zMS80KSsKYl8yXGNvcyhccGl7Zn0vMS4zMS80KQokJAoKd2hlcmU6Cgp8IDx1PlBhcmFtZXRlcjwvdT4gfCA8dT5EZWZpbml0aW9uPC91PiB8CnwgOi0gfCA6LS0tLS0tLS0gfAp8ICRmJCB8IEZyZXF1ZW5jeSAocHBtKSB8CnwgJEFfaSQgfCBHYXVzc2lhbiAqaSoncyBhbXBsaXR1ZGUgfAp8ICRcc2lnbWFfaSQgfCBHYXVzc2lhbiAqaSoncyB3aWR0aCB8CnwgJGZfaSQgfCBHYXVzc2lhbiAqaSoncyBjZW50ZXIgZnJlcXVlbmN5IChwcG0pIHwKfCAkbSQgfCBTbG9wZSBvZiBsaW5lYXIgYmFzZWxpbmUgfAp8ICRiXzEkIHwgU2luZSBiYXNlbGluZSB0ZXJtIHwKfCAkYl8yJCB8IENvc2luZSBiYXNlbGluZSB0ZXJtIHwKCjo6OiBpbmZvCjxpIGNsYXNzPSJmYSBmYS1pbmZvLWNpcmNsZSIgc3R5bGU9ImNvbG9yOiB3aGl0ZSI+PC9pPiZuYnNwOyBUaGUgR0FCQStHbHggbW9kZWwgaXMgZml0dGVkIHVzaW5nIGEgbW9kZWwgdGhhdCBoYXMgb2JzZXJ2YXRpb24gd2VpZ2h0cyBiZXR3ZWVuIDMuMTYgYW5kIDMuMjg1IHBwbSwgd2hlcmUgdGhlIENobyBzdWJ0cmFjdGlvbiBhcnRpZmFjdCBbQEV2YW5zMjAxM10gYXBwZWFycy4gVGhlIHB1cnBvc2UgaXMgdG8gZG93bi13ZWlnaHQgdGhlIGluZmx1ZW5jZSBvZiB0aGlzIGFydGlmYWN0IChpZiBwcmVzZW50KSBvbiB0aGUgbW9kZWwgZml0dGluZy4KOjo6Cgo8aW1nIGlkPSJpbWdfNzUiIHNyYz0iaW1hZ2VzL3NpZ25hbC1tb2RlbGluZy9HQUJBK0dseC5wbmciIGFsdD0iSWxsdXN0cmF0aW9uIG9mIHRoZSBHQUJBK0dseCBtb2RlbCI+CgojIyBHU0ggKFRFIDwgMTAwIG1zKQoKR1NIIHRoYXQgaXMgZWRpdGVkIGF0IGEgVEUgPCAxMDAgbXMgaXMgZml0dGVkIHdpdGggYSBmaXZlLUdhdXNzaWFuIG1vZGVsIHdpdGggYSBsaW5lYXIgKyBxdWFkcmF0aWMgYmFzZWxpbmU6CgokJApTKGYpID0KXHN1bV97aT0xfV57NX1cbGVmdFx7QV9pXGV4cFtcc2lnbWFfaShmLWZfaSleMl1ccmlnaHRcfSsKbV8xKGYtZl8xKSsKbV8yKGYtZl8xKV4yK2IKJCQKCndoZXJlOgoKfCA8dT5QYXJhbWV0ZXI8L3U+IHwgPHU+RGVmaW5pdGlvbjwvdT4gfAp8IDotIHwgOi0tLS0tLS0tIHwKfCAkbV8xJCB8IFNsb3BlIG9mIGxpbmVhciBiYXNlbGluZSB8CnwgJG1fMiQgfCBRdWFkcmF0aWMgYmFzZWxpbmUgdGVybSB8CnwgJGIkIHwgQmFzZWxpbmUgb2Zmc2V0IHwKCjxpbWcgaWQ9ImltZ183NSIgc3JjPSJpbWFnZXMvc2lnbmFsLW1vZGVsaW5nL0dTSC04MC5wbmciIGFsdD0iSWxsdXN0cmF0aW9uIG9mIHRoZSBHU0ggbW9kZWwgYXQgVEUgPSA4MCBtcyI+CgojIyBHU0ggKFRFID49IDEwMCBtcykKCkdTSCB0aGF0IGlzIGVkaXRlZCBhdCBhIFRFID49IDEwMCBtcyBpcyBmaXR0ZWQgd2l0aCBhIHNpeC1HYXVzc2lhbiBtb2RlbCB3aXRoIGEgbGluZWFyICsgcXVhZHJhdGljIGJhc2VsaW5lOgoKJCQKUyhmKSA9ClxzdW1fe2k9MX1eezZ9XGxlZnRce0FfaVxleHBbXHNpZ21hX2koZi1mX2kpXjJdXHJpZ2h0XH0rCm1fMShmLWZfMSkrCm1fMihmLWZfMSleMitiCiQkCgo8aW1nIGlkPSJpbWdfNzUiIHNyYz0iaW1hZ2VzL3NpZ25hbC1tb2RlbGluZy9HU0gtMTIwLnBuZyIgYWx0PSJJbGx1c3RyYXRpb24gb2YgdGhlIEdTSCBtb2RlbCBhdCBURSA9IDEyMCBtcyI+CgojIyBMYWMKCjo6OiBpbmZvCjxpIGNsYXNzPSJmYSBmYS1pbmZvLWNpcmNsZSIgc3R5bGU9ImNvbG9yOiB3aGl0ZSI+PC9pPiBNb2RlbCBvcHRpbWl6YXRpb24gb2YgdGhlIGVkaXRlZCBMYWMgcGVhayBpcyBvbmdvaW5nLgo6OjoKCkxhYyBpcyBmaXR0ZWQgd2l0aCBhIGZvdXItR2F1c3NpYW4gbW9kZWwgd2l0aCBhIGxpbmVhciArIHF1YWRyYXRpYyBiYXNlbGluZToKCiQkClMoZikgPQpcc3VtX3tpPTF9Xns0fVxsZWZ0XHtBX2lcZXhwW1xzaWdtYV9pKGYtZl9pKV4yXVxyaWdodFx9KwptXzEoZi1mXzEpKwptXzIoZi1mXzEpXjIrYgokJAoKPGltZyBpZD0iaW1nXzc1IiBzcmM9ImltYWdlcy9zaWduYWwtbW9kZWxpbmcvTGFjLnBuZyIgYWx0PSJJbGx1c3RyYXRpb24gb2YgdGhlIExhYyBtb2RlbCI+CgojIyBFdE9ICgpFdE9IIGlzIGZpdHRlZCB3aXRoIGEgdHdvLUxvcmVudHppYW4gbW9kZWwgd2l0aCBhIGxpbmVhciBiYXNlbGluZToKCiQkClMoZikgPQpcc3VtX3tpPTF9XnsyfVxsZWZ0W1xmcmFje0Ffe2l9fXsxK1xsZWZ0KFxmcmFje2YtZl97aX19e1xnYW1tYV97aX0vMn1ccmlnaHQpXjJ9XHJpZ2h0XSsKbShmLWZfMSkrYgokJAoKd2hlcmU6Cgp8IDx1PlBhcmFtZXRlcjwvdT4gfCA8dT5EZWZpbml0aW9uPC91PiB8CnwgOi0gfCA6LS0tLS0tLS0gfAp8ICRBX2kkIHwgTG9yZW50emlhbiAqaSoncyBhbXBsaXR1ZGUgfAp8ICRmX2kkIHwgTG9yZW50emlhbiAqaSoncyBjZW50ZXIgZnJlcXVlbmN5IChwcG0pIHwKfCAkXGdhbW1hJCB8IExvcmVudHppYW4gd2lkdGggKGZ1bGwtd2lkdGggYXQgaGFsZi1tYXhpbXVtKSB8Cgo6OjogaW5mbwo8aSBjbGFzcz0iZmEgZmEtaW5mby1jaXJjbGUiIHN0eWxlPSJjb2xvcjogd2hpdGUiPjwvaT4mbmJzcDsgVGhlIEV0T0ggbW9kZWwgaXMgZml0dGVkIHVzaW5nIGEgbW9kZWwgdGhhdCBoYXMgb2JzZXJ2YXRpb24gd2VpZ2h0cyBiZXR3ZWVuIDEuMjkgYW5kIDEuNTEgcHBtLCB3aGVyZSB0aGUgTGFjIHN1YnRyYWN0aW9uIGFydGlmYWN0IGFwcGVhcnMuIFRoZSBwdXJwb3NlIGlzIHRvIGRvd24td2VpZ2h0IHRoZSBpbmZsdWVuY2Ugb2YgdGhpcyBhcnRpZmFjdCAoaWYgcHJlc2VudCkgb24gdGhlIG1vZGVsIGZpdHRpbmcuCjo6OgoKIyMgQ2hvK0NyCgpDaG8gYW5kIENyIGluIHRoZSBlZGl0LU9GRiBzcGVjdHJ1bSBhcmUgZml0dGVkIHdpdGggYSB0d28tTG9yZW50emlhbiBtb2RlbCB3aXRoIGEgbGluZWFyIGJhc2VsaW5lOgoKJCQKQWJzb3JwdGlvbihmKSA9ClxmcmFje0F9ezJccGl9XGZyYWN7XGdhbW1hfXsoZi1mXzApXjIrXGdhbW1hXjJ9KwpcZnJhY3tBaH17MlxwaX1cZnJhY3tcZ2FtbWF9eyhmLWZfMC0wLjE4KV4yK1xnYW1tYV4yfQokJAokJApEaXNwZXJzaW9uKGYpID0KXGZyYWN7QX17MlxwaX1cZnJhY3tmLWZfMH17KGYtZl8wKV4yK1xnYW1tYV4yfSsKXGZyYWN7QWh9ezJccGl9XGZyYWN7Zi1mXzAtMC4xOH17KGYtZl8wLTAuMTgpXjIrXGdhbW1hXjJ9CiQkCgokJApTKGYpID0KXGNvcyhccGhpKUFic29ycHRpb24oZikrClxzaW4oXHBoaSlEaXNwZXJzaW9uKGYpKwptKGYtZl8wKStiCiQkCgp3aGVyZToKCnwgPHU+UGFyYW1ldGVyPC91PiB8IDx1PkRlZmluaXRpb248L3U+IHwKfCA6LSB8IDotLS0tLS0tLSB8CnwgJEEkIHwgQW1wbGl0dWRlIG9mIENyIHBlYWsgfAp8ICRcZ2FtbWEkIHwgTG9yZW50emlhbiB3aWR0aCAoaGFsZi13aWR0aCBhdCBoYWxmLW1heGltdW0pIHwKfCAkZl8wJCB8IENlbnRlciBmcmVxdWVuY3kgb2YgQ3IgcGVhayB8CnwgJGgkIHwgQW1wbGl0dWRlIHNjYWxpbmcgZmFjdG9yIGZvciBDaG8gcGVhayB8CnwgJFxwaGkkIHwgUGhhc2UgfAoKPGltZyBpZD0iaW1nXzc1IiBzcmM9ImltYWdlcy9zaWduYWwtbW9kZWxpbmcvQ2hvK0NyLnBuZyIgYWx0PSJJbGx1c3RyYXRpb24gb2YgdGhlIENobytDciBtb2RlbCI+CgojIyBOQUEKCk5BQSBpbiB0aGUgZWRpdC1PRkYgc3BlY3RydW0gaXMgZml0dGVkIHdpdGggYSBMb3JlbnR6aWFuIG1vZGVsIHdpdGggYSBsaW5lYXIgYmFzZWxpbmU6CgokJApBYnNvcnB0aW9uKGYpID0KXGZyYWN7QX17MlxwaX1cZnJhY3tcZ2FtbWF9eyhmLWZfMCleMitcZ2FtbWFeMn0KJCQKJCQKRGlzcGVyc2lvbihmKSA9ClxmcmFje0F9ezJccGl9XGZyYWN7KGYtZl8wKX17KGYtZl8wKV4yK1xnYW1tYV4yfQokJAoKJCQKUyhmKSA9Clxjb3MoXHBoaSlBYnNvcnB0aW9uKGYpKwpcc2luKFxwaGkpRGlzcGVyc2lvbihmKSsKbShmLWZfMCkrYgokJAoKIyMgV2F0ZXIKClRoZSB1bnN1cnByZXNzZWQgd2F0ZXIgc2lnbmFsIGlzIGZpdHRlZCB3aXRoIGEgTG9yZW50emlhbi1HYXVzc2lhbiBtb2RlbCB3aXRoIGEgbGluZWFyIGJhc2VsaW5lOgoKJCQKUyhmKSA9IApcZnJhY3tcY29zKFxwaGkpQStcc2luKFxwaGkpQVxnYW1tYShmLWZfMCl9CntcZ2FtbWFeMihmLWZfMCleMisxfQpcZXhwW1xzaWdtYShmLWZfMCleMl0rCm0oZi1mXzApK2IKJCQKCjxpbWcgaWQ9ImltZ183NSIgc3JjPSJpbWFnZXMvc2lnbmFsLW1vZGVsaW5nL3dhdGVyLnBuZyIgYWx0PSJJbGx1c3RyYXRpb24gb2YgdGhlIHdhdGVyIG1vZGVsIj4KCjxicj4KCiMjIyBSZWZlcmVuY2VzCgoKCgoKCgoK
Built with R Markdown in RStudio
Copyright © 2020–2025, Mark Mikkelsen