Back to top
This page describes the functions Gannet uses to model metabolite
signals. Note that when the definition of a parameter is omitted from a
table under a particular metabolite, it is implied that it has been
defined already in a previously described function.
For all model fitting, Gannet uses nonlinear regression, with fit
parameters optimized using the least-squares Levenberg-Marquardt
algorithm. For increased computational speed and a better solution, the
starting values of the optimization are derived from a “pre-fit” that
uses the trust-region-reflective algorithm. Description of these
algorithms can be found in the
online
MATLAB documentation .
GABA+Glx
GABA and Glx are fitted using a three-Gaussian model with a linear
slope and non-linear baseline:
\[
S(f) =
\sum_{i=1}^{3}\left\{A_i\exp[\sigma_i(f-f_i)^2]\right\}+
m(f-f_1)+
b_1\sin(\pi{f}/1.31/4)+
b_2\cos(\pi{f}/1.31/4)
\]
where:
\(f\)
Frequency (ppm)
\(A_i\)
Gaussian i ’s amplitude
\(\sigma_i\)
Gaussian i ’s width
\(f_i\)
Gaussian i ’s center frequency (ppm)
\(m\)
Slope of linear baseline
\(b_1\)
Sine baseline term
\(b_2\)
Cosine baseline term
The GABA+Glx
model is fitted using a model that has observation weights between 3.16
and 3.285 ppm, where the Cho subtraction artifact1
appears. The purpose is to down-weight the influence of this artifact
(if present) on the model fitting.
GSH (TE < 100 ms)
GSH that is edited at a TE < 100 ms is fitted with a five-Gaussian
model with a linear + quadratic baseline:
\[
S(f) =
\sum_{i=1}^{5}\left\{A_i\exp[\sigma_i(f-f_i)^2]\right\}+
m_1(f-f_1)+
m_2(f-f_1)^2+b
\]
where:
\(m_1\)
Slope of linear baseline
\(m_2\)
Quadratic baseline term
\(b\)
Baseline offset
GSH (TE >= 100 ms)
GSH that is edited at a TE >= 100 ms is fitted with a six-Gaussian
model with a linear + quadratic baseline:
\[
S(f) =
\sum_{i=1}^{6}\left\{A_i\exp[\sigma_i(f-f_i)^2]\right\}+
m_1(f-f_1)+
m_2(f-f_1)^2+b
\]
Lac
Optimization
of the modeling of edited Lac is ongoing.
Lac is fitted with a four-Gaussian model with a linear + quadratic
baseline:
\[
S(f) =
\sum_{i=1}^{4}\left\{A_i\exp[\sigma_i(f-f_i)^2]\right\}+
m_1(f-f_1)+
m_2(f-f_1)^2+b
\]
EtOH
EtOH is fitted with a two-Lorentzian model with a linear
baseline:
\[
S(f) =
\sum_{i=1}^{2}\left[\frac{A_{i}}{1+\left(\frac{f-f_{i}}{\gamma_{i}/2}\right)^2}\right]+
m(f-f_1)+b
\]
where:
\(A_i\)
Lorentzian i ’s amplitude
\(f_i\)
Lorentzian i ’s center frequency (ppm)
\(\gamma\)
Lorentzian width (full-width at half-maximum)
The EtOH
model is fitted using a model that has observation weights between 1.29
and 1.51 ppm, where the Lac subtraction artifact appears. The purpose is
to down-weight the influence of this artifact (if present) on the model
fitting.
Cho+Cr
Cho and Cr in the edit-OFF spectrum are fitted with a two-Lorentzian
model with a linear baseline:
\[
Absorption(f) =
\frac{A}{2\pi}\frac{\gamma}{(f-f_0)^2+\gamma^2}+
\frac{Ah}{2\pi}\frac{\gamma}{(f-f_0-0.18)^2+\gamma^2}
\] \[
Dispersion(f) =
\frac{A}{2\pi}\frac{f-f_0}{(f-f_0)^2+\gamma^2}+
\frac{Ah}{2\pi}\frac{f-f_0-0.18}{(f-f_0-0.18)^2+\gamma^2}
\]
\[
S(f) =
\cos(\phi)Absorption(f)+
\sin(\phi)Dispersion(f)+
m(f-f_0)+b
\]
where:
\(A\)
Amplitude of Cr peak
\(\gamma\)
Lorentzian width (half-width at half-maximum)
\(f_0\)
Center frequency of Cr peak
\(h\)
Amplitude scaling factor for Cho peak
\(\phi\)
Phase
NAA
NAA in the edit-OFF spectrum is fitted with a Lorentzian model with a
linear baseline:
\[
Absorption(f) =
\frac{A}{2\pi}\frac{\gamma}{(f-f_0)^2+\gamma^2}
\] \[
Dispersion(f) =
\frac{A}{2\pi}\frac{(f-f_0)}{(f-f_0)^2+\gamma^2}
\]
\[
S(f) =
\cos(\phi)Absorption(f)+
\sin(\phi)Dispersion(f)+
m(f-f_0)+b
\]
Water
The unsurpressed water signal is fitted with a Lorentzian-Gaussian
model with a linear baseline:
\[
S(f) =
\frac{\cos(\phi)A+\sin(\phi)A\gamma(f-f_0)}
{\gamma^2(f-f_0)^2+1}
\exp[\sigma(f-f_0)^2]+
m(f-f_0)+b
\]
References
1.
Evans CJ, Puts NAJ, Robson SE, et al.
Subtraction artifacts and frequency (Mis-)alignment in
J-difference GABA editing .
Journal of Magnetic Resonance
Imaging . 2013;38(4):970-975. doi:
10.1002/jmri.23923
LS0tCnRpdGxlOiAiU2lnbmFsIG1vZGVsaW5nIgpkYXRlOiAiTGFzdCB1cGRhdGVkOiBgciBmb3JtYXQoU3lzLnRpbWUoKSwgJyVCICVkLCAlWScpYCIKYmlibGlvZ3JhcGh5OiBiaWJsaW9ncmFwaHkuYmliCmNzbDogYW1lcmljYW4tbWVkaWNhbC1hc3NvY2lhdGlvbi5jc2wKbGluay1jaXRhdGlvbnM6IHllcwpvdXRwdXQ6CiAgaHRtbF9kb2N1bWVudDoKICAgIHRvYzogVFJVRQogICAgdG9jX2RlcHRoOiAyCiAgICB0b2NfZmxvYXQ6CiAgICAgIGNvbGxhcHNlZDogRkFMU0UKLS0tCgpgYGB7ciBzZXR1cCwgaW5jbHVkZSA9IEZBTFNFfQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpCmBgYAoKYGBge3IsIGNoaWxkID0gImpzL2JhY2stdG8tdG9wLmpzIn0KYGBgCgpgYGB7Y3NzLCBlY2hvID0gRkFMU0V9CnRhYmxlIHsKICBtYXJnaW46IGF1dG87Cn0KCnRhYmxlIHRoZWFkIHRoIHsKICBib3JkZXItYm90dG9tOiAxcHggc29saWQgI2RkZDsKfQoKdGgsIHRkIHsKICBwYWRkaW5nOiA1cHg7Cn0KCnRmb290LCB0cjpudGgtY2hpbGQoZXZlbikgewogIGJhY2tncm91bmQ6ICNlZWU7Cn0KYGBgCgo8YnI+CgpUaGlzIHBhZ2UgZGVzY3JpYmVzIHRoZSBmdW5jdGlvbnMgR2FubmV0IHVzZXMgdG8gbW9kZWwgbWV0YWJvbGl0ZSBzaWduYWxzLiBOb3RlIHRoYXQgd2hlbiB0aGUgZGVmaW5pdGlvbiBvZiBhIHBhcmFtZXRlciBpcyBvbWl0dGVkIGZyb20gYSB0YWJsZSB1bmRlciBhIHBhcnRpY3VsYXIgbWV0YWJvbGl0ZSwgaXQgaXMgaW1wbGllZCB0aGF0IGl0IGhhcyBiZWVuIGRlZmluZWQgYWxyZWFkeSBpbiBhIHByZXZpb3VzbHkgZGVzY3JpYmVkIGZ1bmN0aW9uLgoKRm9yIGFsbCBtb2RlbCBmaXR0aW5nLCBHYW5uZXQgdXNlcyBub25saW5lYXIgcmVncmVzc2lvbiwgd2l0aCBmaXQgcGFyYW1ldGVycyBvcHRpbWl6ZWQgdXNpbmcgdGhlIGxlYXN0LXNxdWFyZXMgTGV2ZW5iZXJnLU1hcnF1YXJkdCBhbGdvcml0aG0uIEZvciBpbmNyZWFzZWQgY29tcHV0YXRpb25hbCBzcGVlZCBhbmQgYSBiZXR0ZXIgc29sdXRpb24sIHRoZSBzdGFydGluZyB2YWx1ZXMgb2YgdGhlIG9wdGltaXphdGlvbiBhcmUgZGVyaXZlZCBmcm9tIGEgInByZS1maXQiIHRoYXQgdXNlcyB0aGUgdHJ1c3QtcmVnaW9uLXJlZmxlY3RpdmUgYWxnb3JpdGhtLiBEZXNjcmlwdGlvbiBvZiB0aGVzZSBhbGdvcml0aG1zIGNhbiBiZSBmb3VuZCBpbiB0aGUgPGEgaHJlZj0iaHR0cHM6Ly93d3cubWF0aHdvcmtzLmNvbS9oZWxwL29wdGltL3VnL2xlYXN0LXNxdWFyZXMtbW9kZWwtZml0dGluZy1hbGdvcml0aG1zLmh0bWwiIHRhcmdldD0iX2JsYW5rIj5vbmxpbmUgTUFUTEFCIGRvY3VtZW50YXRpb248L2E+LgoKIyMgR0FCQStHbHgKCkdBQkEgYW5kIEdseCBhcmUgZml0dGVkIHVzaW5nIGEgdGhyZWUtR2F1c3NpYW4gbW9kZWwgd2l0aCBhIGxpbmVhciBzbG9wZSBhbmQgbm9uLWxpbmVhciBiYXNlbGluZToKCiQkClMoZikgPQpcc3VtX3tpPTF9XnszfVxsZWZ0XHtBX2lcZXhwW1xzaWdtYV9pKGYtZl9pKV4yXVxyaWdodFx9KwptKGYtZl8xKSsKYl8xXHNpbihccGl7Zn0vMS4zMS80KSsKYl8yXGNvcyhccGl7Zn0vMS4zMS80KQokJAoKd2hlcmU6Cgp8IDx1PlBhcmFtZXRlcjwvdT4gfCA8dT5EZWZpbml0aW9uPC91PiB8CnwgOi0gfCA6LS0tLS0tLS0gfAp8ICRmJCB8IEZyZXF1ZW5jeSAocHBtKSB8CnwgJEFfaSQgfCBHYXVzc2lhbiAqaSoncyBhbXBsaXR1ZGUgfAp8ICRcc2lnbWFfaSQgfCBHYXVzc2lhbiAqaSoncyB3aWR0aCB8CnwgJGZfaSQgfCBHYXVzc2lhbiAqaSoncyBjZW50ZXIgZnJlcXVlbmN5IChwcG0pIHwKfCAkbSQgfCBTbG9wZSBvZiBsaW5lYXIgYmFzZWxpbmUgfAp8ICRiXzEkIHwgU2luZSBiYXNlbGluZSB0ZXJtIHwKfCAkYl8yJCB8IENvc2luZSBiYXNlbGluZSB0ZXJtIHwKCjo6OiBpbmZvCjxpIGNsYXNzPSJmYSBmYS1pbmZvLWNpcmNsZSIgc3R5bGU9ImNvbG9yOiB3aGl0ZSI+PC9pPiZuYnNwOyBUaGUgR0FCQStHbHggbW9kZWwgaXMgZml0dGVkIHVzaW5nIGEgbW9kZWwgdGhhdCBoYXMgb2JzZXJ2YXRpb24gd2VpZ2h0cyBiZXR3ZWVuIDMuMTYgYW5kIDMuMjg1IHBwbSwgd2hlcmUgdGhlIENobyBzdWJ0cmFjdGlvbiBhcnRpZmFjdCBbQEV2YW5zMjAxM10gYXBwZWFycy4gVGhlIHB1cnBvc2UgaXMgdG8gZG93bi13ZWlnaHQgdGhlIGluZmx1ZW5jZSBvZiB0aGlzIGFydGlmYWN0IChpZiBwcmVzZW50KSBvbiB0aGUgbW9kZWwgZml0dGluZy4KOjo6Cgo8aW1nIGlkPSJpbWdfNzUiIHNyYz0iaW1hZ2VzL3NpZ25hbC1tb2RlbGluZy9HQUJBK0dseC5wbmciIGFsdD0iSWxsdXN0cmF0aW9uIG9mIHRoZSBHQUJBK0dseCBtb2RlbCI+CgojIyBHU0ggKFRFIDwgMTAwIG1zKQoKR1NIIHRoYXQgaXMgZWRpdGVkIGF0IGEgVEUgPCAxMDAgbXMgaXMgZml0dGVkIHdpdGggYSBmaXZlLUdhdXNzaWFuIG1vZGVsIHdpdGggYSBsaW5lYXIgKyBxdWFkcmF0aWMgYmFzZWxpbmU6CgokJApTKGYpID0KXHN1bV97aT0xfV57NX1cbGVmdFx7QV9pXGV4cFtcc2lnbWFfaShmLWZfaSleMl1ccmlnaHRcfSsKbV8xKGYtZl8xKSsKbV8yKGYtZl8xKV4yK2IKJCQKCndoZXJlOgoKfCA8dT5QYXJhbWV0ZXI8L3U+IHwgPHU+RGVmaW5pdGlvbjwvdT4gfAp8IDotIHwgOi0tLS0tLS0tIHwKfCAkbV8xJCB8IFNsb3BlIG9mIGxpbmVhciBiYXNlbGluZSB8CnwgJG1fMiQgfCBRdWFkcmF0aWMgYmFzZWxpbmUgdGVybSB8CnwgJGIkIHwgQmFzZWxpbmUgb2Zmc2V0IHwKCjxpbWcgaWQ9ImltZ183NSIgc3JjPSJpbWFnZXMvc2lnbmFsLW1vZGVsaW5nL0dTSC04MC5wbmciIGFsdD0iSWxsdXN0cmF0aW9uIG9mIHRoZSBHU0ggbW9kZWwgYXQgVEUgPSA4MCBtcyI+CgojIyBHU0ggKFRFID49IDEwMCBtcykKCkdTSCB0aGF0IGlzIGVkaXRlZCBhdCBhIFRFID49IDEwMCBtcyBpcyBmaXR0ZWQgd2l0aCBhIHNpeC1HYXVzc2lhbiBtb2RlbCB3aXRoIGEgbGluZWFyICsgcXVhZHJhdGljIGJhc2VsaW5lOgoKJCQKUyhmKSA9ClxzdW1fe2k9MX1eezZ9XGxlZnRce0FfaVxleHBbXHNpZ21hX2koZi1mX2kpXjJdXHJpZ2h0XH0rCm1fMShmLWZfMSkrCm1fMihmLWZfMSleMitiCiQkCgo8aW1nIGlkPSJpbWdfNzUiIHNyYz0iaW1hZ2VzL3NpZ25hbC1tb2RlbGluZy9HU0gtMTIwLnBuZyIgYWx0PSJJbGx1c3RyYXRpb24gb2YgdGhlIEdTSCBtb2RlbCBhdCBURSA9IDEyMCBtcyI+CgojIyBMYWMKCjo6OiBpbmZvCjxpIGNsYXNzPSJmYSBmYS1pbmZvLWNpcmNsZSIgc3R5bGU9ImNvbG9yOiB3aGl0ZSI+PC9pPiBPcHRpbWl6YXRpb24gb2YgdGhlIG1vZGVsaW5nIG9mIGVkaXRlZCBMYWMgaXMgb25nb2luZy4KOjo6CgpMYWMgaXMgZml0dGVkIHdpdGggYSBmb3VyLUdhdXNzaWFuIG1vZGVsIHdpdGggYSBsaW5lYXIgKyBxdWFkcmF0aWMgYmFzZWxpbmU6CgokJApTKGYpID0KXHN1bV97aT0xfV57NH1cbGVmdFx7QV9pXGV4cFtcc2lnbWFfaShmLWZfaSleMl1ccmlnaHRcfSsKbV8xKGYtZl8xKSsKbV8yKGYtZl8xKV4yK2IKJCQKCjxpbWcgaWQ9ImltZ183NSIgc3JjPSJpbWFnZXMvc2lnbmFsLW1vZGVsaW5nL0xhYy5wbmciIGFsdD0iSWxsdXN0cmF0aW9uIG9mIHRoZSBMYWMgbW9kZWwiPgoKIyMgRXRPSAoKRXRPSCBpcyBmaXR0ZWQgd2l0aCBhIHR3by1Mb3JlbnR6aWFuIG1vZGVsIHdpdGggYSBsaW5lYXIgYmFzZWxpbmU6CgokJApTKGYpID0KXHN1bV97aT0xfV57Mn1cbGVmdFtcZnJhY3tBX3tpfX17MStcbGVmdChcZnJhY3tmLWZfe2l9fXtcZ2FtbWFfe2l9LzJ9XHJpZ2h0KV4yfVxyaWdodF0rCm0oZi1mXzEpK2IKJCQKCndoZXJlOgoKfCA8dT5QYXJhbWV0ZXI8L3U+IHwgPHU+RGVmaW5pdGlvbjwvdT4gfAp8IDotIHwgOi0tLS0tLS0tIHwKfCAkQV9pJCB8IExvcmVudHppYW4gKmkqJ3MgYW1wbGl0dWRlIHwKfCAkZl9pJCB8IExvcmVudHppYW4gKmkqJ3MgY2VudGVyIGZyZXF1ZW5jeSAocHBtKSB8CnwgJFxnYW1tYSQgfCBMb3JlbnR6aWFuIHdpZHRoIChmdWxsLXdpZHRoIGF0IGhhbGYtbWF4aW11bSkgfAoKOjo6IGluZm8KPGkgY2xhc3M9ImZhIGZhLWluZm8tY2lyY2xlIiBzdHlsZT0iY29sb3I6IHdoaXRlIj48L2k+Jm5ic3A7IFRoZSBFdE9IIG1vZGVsIGlzIGZpdHRlZCB1c2luZyBhIG1vZGVsIHRoYXQgaGFzIG9ic2VydmF0aW9uIHdlaWdodHMgYmV0d2VlbiAxLjI5IGFuZCAxLjUxIHBwbSwgd2hlcmUgdGhlIExhYyBzdWJ0cmFjdGlvbiBhcnRpZmFjdCBhcHBlYXJzLiBUaGUgcHVycG9zZSBpcyB0byBkb3duLXdlaWdodCB0aGUgaW5mbHVlbmNlIG9mIHRoaXMgYXJ0aWZhY3QgKGlmIHByZXNlbnQpIG9uIHRoZSBtb2RlbCBmaXR0aW5nLgo6OjoKCiMjIENobytDcgoKQ2hvIGFuZCBDciBpbiB0aGUgZWRpdC1PRkYgc3BlY3RydW0gYXJlIGZpdHRlZCB3aXRoIGEgdHdvLUxvcmVudHppYW4gbW9kZWwgd2l0aCBhIGxpbmVhciBiYXNlbGluZToKCiQkCkFic29ycHRpb24oZikgPQpcZnJhY3tBfXsyXHBpfVxmcmFje1xnYW1tYX17KGYtZl8wKV4yK1xnYW1tYV4yfSsKXGZyYWN7QWh9ezJccGl9XGZyYWN7XGdhbW1hfXsoZi1mXzAtMC4xOCleMitcZ2FtbWFeMn0KJCQKJCQKRGlzcGVyc2lvbihmKSA9ClxmcmFje0F9ezJccGl9XGZyYWN7Zi1mXzB9eyhmLWZfMCleMitcZ2FtbWFeMn0rClxmcmFje0FofXsyXHBpfVxmcmFje2YtZl8wLTAuMTh9eyhmLWZfMC0wLjE4KV4yK1xnYW1tYV4yfQokJAoKJCQKUyhmKSA9Clxjb3MoXHBoaSlBYnNvcnB0aW9uKGYpKwpcc2luKFxwaGkpRGlzcGVyc2lvbihmKSsKbShmLWZfMCkrYgokJAoKd2hlcmU6Cgp8IDx1PlBhcmFtZXRlcjwvdT4gfCA8dT5EZWZpbml0aW9uPC91PiB8CnwgOi0gfCA6LS0tLS0tLS0gfAp8ICRBJCB8IEFtcGxpdHVkZSBvZiBDciBwZWFrIHwKfCAkXGdhbW1hJCB8IExvcmVudHppYW4gd2lkdGggKGhhbGYtd2lkdGggYXQgaGFsZi1tYXhpbXVtKSB8CnwgJGZfMCQgfCBDZW50ZXIgZnJlcXVlbmN5IG9mIENyIHBlYWsgfAp8ICRoJCB8IEFtcGxpdHVkZSBzY2FsaW5nIGZhY3RvciBmb3IgQ2hvIHBlYWsgfAp8ICRccGhpJCB8IFBoYXNlIHwKCjxpbWcgaWQ9ImltZ183NSIgc3JjPSJpbWFnZXMvc2lnbmFsLW1vZGVsaW5nL0NobytDci5wbmciIGFsdD0iSWxsdXN0cmF0aW9uIG9mIHRoZSBDaG8rQ3IgbW9kZWwiPgoKIyMgTkFBCgpOQUEgaW4gdGhlIGVkaXQtT0ZGIHNwZWN0cnVtIGlzIGZpdHRlZCB3aXRoIGEgTG9yZW50emlhbiBtb2RlbCB3aXRoIGEgbGluZWFyIGJhc2VsaW5lOgoKJCQKQWJzb3JwdGlvbihmKSA9ClxmcmFje0F9ezJccGl9XGZyYWN7XGdhbW1hfXsoZi1mXzApXjIrXGdhbW1hXjJ9CiQkCiQkCkRpc3BlcnNpb24oZikgPQpcZnJhY3tBfXsyXHBpfVxmcmFjeyhmLWZfMCl9eyhmLWZfMCleMitcZ2FtbWFeMn0KJCQKCiQkClMoZikgPQpcY29zKFxwaGkpQWJzb3JwdGlvbihmKSsKXHNpbihccGhpKURpc3BlcnNpb24oZikrCm0oZi1mXzApK2IKJCQKCiMjIFdhdGVyCgpUaGUgdW5zdXJwcmVzc2VkIHdhdGVyIHNpZ25hbCBpcyBmaXR0ZWQgd2l0aCBhIExvcmVudHppYW4tR2F1c3NpYW4gbW9kZWwgd2l0aCBhIGxpbmVhciBiYXNlbGluZToKCiQkClMoZikgPSAKXGZyYWN7XGNvcyhccGhpKUErXHNpbihccGhpKUFcZ2FtbWEoZi1mXzApfQp7XGdhbW1hXjIoZi1mXzApXjIrMX0KXGV4cFtcc2lnbWEoZi1mXzApXjJdKwptKGYtZl8wKStiCiQkCgo8aW1nIGlkPSJpbWdfNzUiIHNyYz0iaW1hZ2VzL3NpZ25hbC1tb2RlbGluZy93YXRlci5wbmciIGFsdD0iSWxsdXN0cmF0aW9uIG9mIHRoZSB3YXRlciBtb2RlbCI+Cgo8YnI+CgojIyMgUmVmZXJlbmNlcwoKCgoKCgoKCg==
Built with R Markdown in RStudio
Copyright © 2020–2024, Mark Mikkelsen